工具之家 > 科技资讯 > 用初等变换法判断实二次型的类型

用初等变换法判断实二次型的类型

发布时间:2019-08-14 02:11:06 文章来源:工具之家    

 推荐工具:金融理财app工具实用工具

段桂花

摘要li用chudeng变换法将shiercixingdeju阵化wei对角juzhen即得daoshiercixingde一ge标zhun形从er就可以pan断实ercixingdeleixing

关键词:初deng变换法zhengding实ercixing实对称ju阵

中图分leihao:O151.21 文献标识码:A 文章编号1672-3791(214)2(b)-0-00

正dingercixingyu正定ju阵de判定yuzhengmingshier次xingde一个重点对yu具体de实er次xing一般cai用全部顺序主子式大于ling的充分必要条件来判定er对于抽象的实ercixing往往caiyong定义及特征值法deng判定其正定性但以shang方法计算量大且不容易计算ben文介绍一种新的方法——初等变换法来判断实二次xingde类xinggai方法只涉及矩阵的初等变换所以buzhoudan一、运算量xiao、易于掌握最有效、zuishi用

1初等合同变换的定义及结论

1、定义1 对于矩阵 称以下三种初等变huanwei 的初等合同变换:

(1)、交换 的di xing与di 行的位置得 ,紧接着交换 的di lie与第 lie的位置;

(2)、 dedi 行乘以非零shu 得 ,紧接着 的第 列乘以非零shu ;

(3)、 的第 行的 倍jiadao第 行得 ,紧接着 的第 列的 倍加到第 列shang

you定义知,任意的实对称矩阵jingguo初等合同变换后仍然是实对称矩阵,且任意实对称矩zhendu可以经过ruo干次初等合同变换化wei对角矩阵

2、定理:设矩阵 是实二次型 的矩阵,若矩阵 经过一些初等合同变换化为对角矩阵 ,ze

(1)当 时gai实二次型为正定二次型;

(2)当 时,gai实二次型weifu定二次型;

(3)当 时,该实二次型为半正定二次型;

(4)当 时,该实二次型为半负定二次型;

(5)当 中有正数也有负数时,该实二次型为不定二次xing

2用初等变换法判断实二次型类型的ying用

li1、判断实二次型 的类型。

jie:

将该二次型的矩阵A jinxing初等合同变换:

于是该二次型的一个标准形对应的对角矩阵的主对角xian上的yuansu youshangmian的定理知,该实二次型为不定二次型。

例2、判断实二次型 的类型。

解:

将该二次型的矩阵A jinxing初等合同变换:

于是该二次型的一个标准形对应的对角矩阵的主对角线上的元su 由上面的定理知,该实二次型为不定二次型。

例3、判断实二次型 的类型化。

解gai二次型的矩阵为

将该二次型的矩阵A 进行初等合同变换:

于是该二次型的一个标准形对应的对角矩阵的主对角线上的yuansu 由上面的定理知,该实二次型为正定二次型。

总之,用初等合同变换法判断实二次型的类型比较简dan,该方法只涉及矩阵的初等变换,所以步zhou单一、运算量小、易于掌握,最有效、最实用。

参kao文献

[1]gao等dai数.张禾瑞,郝鈵新编,第五版,北京:gaodengjiaoyu出版社,2007.6

[2]高等dai数,北京大学数学系几何与代数教研室代数小组编,第二版,北京:高等教育出版社,1988.3.

[3]高等代数-导教、导学、daokao.徐zhongdeng编.西安:西北工业大学出版社,2004.3.

[4]高等代数辅导与习题解da.黄光谷等编.武汉:华中科技大学出版社,2004.3.endprint

摘要:利用初等变换法,将实二次型的矩阵化为对角矩阵,即dedao实二次型的一个标准形,从而就可以判断实二次型的类型。

关键词:初等变换法;正定;实二次型;实对称矩阵

中图分类号:O151.21 文献标识码:A 文章编号1672-3791(2014)02(b)-0000-00

正定二次型与正定矩阵的判定与证明是二次型的一个重点。对于具体的实二次型,一bancai用全部顺序主子式大于零的充分必要条件来判定;而对于抽象的实二次型,往往采用定义及特征值法等判定其正定性。但以上方法计算量大,且不容易计算ben文介绍一种新的方法——初等变换法来判断实二次型的类型。该方法只涉及矩阵的初等变换,所以步骤单一、运算量小、易于掌握,最有效、最实用。

1初等合同变换的定义及结论

1、定义1 对于矩阵 ,称以下三种初等变换为 的初等合同变换:

(1)、交换 的第 行与第 行的位置得 ,紧接着交换 的第 列与第 列的位置;

(2)、 的第 行乘以非零数 得 ,紧接着 的第 列乘以非零数 ;

(3)、 的第 行的 倍加到第 行得 ,紧接着 的第 列的 倍加到第 列上;

由定义知,任意的实对称矩阵经过初等合同变换后仍然是实对称矩阵,且任意实对称矩阵都可以经过若干次初等合同变换化为对角矩阵。

2、定理:设矩阵 是实二次型 的矩阵,若矩阵 经过一些初等合同变换化为对角矩阵 ,则

(1)当 时,该实二次型为正定二次型;

(2)当 时,该实二次型weifu定二次型;

(3)当 时,该实二次型为半正定二次型;

(4)当 时,该实二次型为半负定二次型;

(5)当 中有正数也有负数时,该实二次型为不定二次型。

2用初等变换法判断实二次型类型的应用

例1、判断实二次型 的类型。

解:

将该二次型的矩阵A 进行初等合同变换:

于是该二次型的一个标准形对应的对角矩阵的主对角线上的元素 由上面的定理知,该实二次型为不定二次型。

例2、判断实二次型 的类型。

解:

将该二次型的矩阵A 进行初等合同变换:

于是该二次型的一个标准形对应的对角矩阵的主对角线上的元素 由上面的定理知,该实二次型为不定二次型。

例3、判断实二次型 的类型化。

解:该二次型的矩阵为

将该二次型的矩阵A 进行初等合同变换:

于是该二次型的一个标准形对应的对角矩阵的主对角线上的元素 由上面的定理知,该实二次型为正定二次型。

总之,用初等合同变换法判断实二次型的类型比较简单,该方法只涉及矩阵的初等变换,所以步骤单一、运算量小、易于掌握,最有效、最实用。

参考文献

[1]高等代数.张禾瑞,郝鈵新编,第五版,北京:高等教育出版社,2007.6

[2]高等代数,北京大学数学系几何与代数教研室代数小组编,第二版,北京:高等教育出版社,1988.3.

[3]高等代数-导教、导学、导考.徐仲等编.西安:西北工业大学出版社,2004.3.

[4]高等代数辅导与习题解da.黄光谷等编.武汉:华中科技大学出版社,2004.3.endprint

摘要:利用初等变换法,将实二次型的矩阵化为对角矩阵,即得到实二次型的一个标准形,从而就可以判断实二次型的类型。

关键词:初等变换法;正定;实二次型;实对称矩阵

中图分类号:O151.21 文献标识码:A 文章编号1672-3791(2014)02(b)-0000-00

正定二次型与正定矩阵的判定与证明是二次型的一个重点。对于具体的实二次型,一般采用全部顺序主子式大于零的充分必要条件来判定;而对于抽象的实二次型,往往采用定义及特征值法等判定其正定性。但以上方法计算量大,且不容易计算。本文介绍一种新的方法——初等变换法来判断实二次型的类型。该方法只涉及矩阵的初等变换,所以步骤单一、运算量小、易于掌握,最有效、最实用。

1初等合同变换的定义及结论

1、定义1 对于矩阵 ,称以下三种初等变换为 的初等合同变换:

(1)、交换 的第 行与第 行的位置得 ,紧接着交换 的第 列与第 列的位置;

(2)、 的第 行乘以非零数 得 ,紧接着 的第 列乘以非零数 ;

(3)、 的第 行的 倍加到第 行得 ,紧接着 的第 列的 倍加到第 列上;

由定义知,任意的实对称矩阵经过初等合同变换后仍然是实对称矩阵,且任意实对称矩阵都可以经过若干次初等合同变换化为对角矩阵。

2、定理:设矩阵 是实二次型 的矩阵,若矩阵 经过一些初等合同变换化为对角矩阵 ,则

(1)当 时,该实二次型为正定二次型;

(2)当 时,该实二次型为负定二次型;

(3)当 时,该实二次型为半正定二次型;

(4)当 时,该实二次型为半负定二次型;

(5)当 中有正数也有负数时,该实二次型为不定二次型。

2用初等变换法判断实二次型类型的应用

例1、判断实二次型 的类型。

解:

将该二次型的矩阵A 进行初等合同变换:

于是该二次型的一个标准形对应的对角矩阵的主对角线上的元素 由上面的定理知,该实二次型为不定二次型。

例2、判断实二次型 的类型。

解:

将该二次型的矩阵A 进行初等合同变换:

于是该二次型的一个标准形对应的对角矩阵的主对角线上的元素 由上面的定理知,该实二次型为不定二次型。

例3、判断实二次型 的类型化。

解:该二次型的矩阵为

将该二次型的矩阵A 进行初等合同变换:

于是该二次型的一个标准形对应的对角矩阵的主对角线上的元素 由上面的定理知,该实二次型为正定二次型。

总之,用初等合同变换法判断实二次型的类型比较简单,该方法只涉及矩阵的初等变换,所以步骤单一、运算量小、易于掌握,最有效、最实用。

参考文献

[1]高等代数.张禾瑞,郝鈵新编,第五版,北京:高等教育出版社,2007.6

[2]高等代数,北京大学数学系几何与代数教研室代数小组编,第二版,北京:高等教育出版社,1988.3.

[3]高等代数-导教、导学、导考.徐仲等编.西安:西北工业大学出版社,2004.3.

[4]高等代数辅导与习题解答.黄光谷等编.武汉:华中科技大学出版社,2004.3.endprint

科技zi讯 2014年12期

科技资讯的其它文章 中国农产品进出kou贸易wen题研究 浅谈社区常见疾bing的院前急救措施 城市小学生单chun性肥胖症的病因分析及干预对策 博物馆讲解工作对发掘文物展品内涵的重要性 基于提高人脸识别效率的方法研究 水利枢纽施工控制网建设中若干问题的探讨
转载请注明来源。原文地址:https://www.5420.com.cn/view/2019/0814/19230/
 与本篇相关的热门内容: